- Title
- Predicting gas-liquid flow in a mechanically stirred tank
- Creator
- Lane, G. L.; Schwarz, M. P.; Evans, G. M.
- Relation
- Applied Mathematical Modelling Vol. 26, Issue 2, p. 223-235
- Publisher Link
- http://dx.doi.org/10.1016/S0307-904X(01)00057-9
- Publisher
- Elsevier Science Ltd.
- Resource Type
- journal article
- Date
- 2002
- Description
- Computational fluid dynamics (CFD) provides a method for investigating the highly complex fluid flow in mechanically stirred tanks. Although there are quite a number of papers in the literature describing CFD methods for modelling stirred tanks, most only consider single-phase flow. However, multiphase mixtures occur very frequently in the process industries, and these are more complex situations for which modelling is not as well developed. This paper reports on progress in developing CFD simulations of gas–liquid mixing in a baffled stirred tank. The model is three-dimensional and the impeller region is explicitly included using a Multiple Frames of Reference method to account for the relative movement between impeller and baffles. Fluid flow is calculated with a turbulent two-fluid model using a finite-volume method. Several alternative treatments of the multiphase equations are possible, including various expressions for drag and dispersion forces, and a number of these have been tested. Variation in bubble size due to coalescence and break-up is also modelled. The CFD simulation method has been used to model a gassparged tank equipped with a Rushton turbine, and simulation results are compared with experimental data. Results to date show the correct pattern of gas distribution and the correct trends in local bubble size in the tank. Further work is needed to improve the quantitative agreement with experimental data.
- Subject
- CFD; stirred vessel; gas dispersion; bubble break-up; coalescence
- Identifier
- http://hdl.handle.net/1959.13/27143
- Identifier
- uon:1403
- Identifier
- ISSN:0307-904X
- Language
- eng
- Reviewed
- Hits: 2015
- Visitors: 2329
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|